Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Chennai Mathematical Institute,Madras

Week - 02
Lecture - 01
Assignment statement, Basic types — int, float, bool

Last week, we were introduced to notation of algorithms using the ged example. We also
saw informally some python code, which we could understand but we have not actually

been introduced to formal python syntax. Let us start with some real python step.

(Refer Slide Time: 00:17)

A typical Python program

def function_1(..,..) * Interpreter executes
statements from top

>+ f r +1 7 .
de function_2(..,..) to bottom

* Function definitions

def function_k(..,..) R -

o () are “digested” for
future use

statement_1 |

statement_2 * Actual computation

starts from
statement_n statement_1

A typical python program would be written like this, we have a bunch of function
definitions followed by a bunch of statements to be executed. So remember that we said
python is typically interpreted, so an interpreter is a program, which will read python
code and execute it from top to bottom. So, the interpreter always starts at the beginning

of you of python code and reads from top to bottom.

Now, function definition is a kind of statement, but it does not actually result in anything
happening, the python interpreter merely digests the function kind of remembers the
function definition. So that later on if an actual statement refers to this function it knows
what to do. In this kind of organization the execution would actually start with the

statement which is called statement 1. So, first you will digest k functions and then start

63

executing 1, 2, 3, 4 up to statement n.

(Refer Slide Time: 01: 09)

A more MEeESSY program

statement_1 * Python allows free

def function_1(..,.. j 5 mnqng_ of function
definitions and
statements

statement_2

statement_3 « But programs written
like this are likely to

def function_2(..,..):

5 be harder to

understand and

statement_4 debug

Now there is no reason to do this. So, python actually allows you to freely mix function
definitions and statements, and in fact, function definitions are also statements of a kind
its just they do not result in something immediately happening, but rather in the function

been remembered.

But one of things that python would insist is that if a function is used in a statement that
has to be executed that function should have been defined already; either it must be a
built in function or its definition must be provided. So, it may use this kind of jumbled up
order, we have to be careful that functions are defined before they are used. Also
jumbling up the order of statements and function definitions in this way, makes it much
harder to read the program and understand what it is doing. Though it is not required by
python as such as, it strongly recommended that all function definition should be put at
the top of the program and all the statements that form the main part of the code should

follow later.

64

(Refer Slide Time: 02:07)

Assignment statement

* Assign a value to a name

1

. N

*1
+ 5

* Left hand side is a name

» Right hand side is an expression

* Operations in expression depend on type of value

What is a statement ? The most basic statement in python is to assign a value to a name.
So, we see examples and we have seen examples and here are some examples. So, in the
first statement i is a name and it is assigned a value 5; in the second statement, j is a
different name and it is assigned an expression 2 times i. So, in this expression, the value
of 1 will be substituted for the expression i here. So, if 1 have not already been assigned a
value before, python would not know what to substitute for i and it would be flagged as

an €rror.

When you use a name of the right hand side as part of an expression, you must make sure
that it already has a valid value. And as we saw, you can also have statements which
merely update a value. So, when we say j is equal to j plus 5 it is not a mathematical
statement, where the value of j is equal to the value of j plus 5. But rather that the old
value of j which is on the right hand side is updated by adding 5 to it and then it gets
replaced as a new value j. This is an assignment statement, this equality assigns the value
computed form the right hand side given the current values of all the names if the name

given on the left hand side, with the same name can appear on both sides.

The left hand side is a name and the right hand side in general is an expression. And in
the expression, you can do things which are legal, given the types of values in the
expression. So, values have types; if you have numbers, you can perform arithmetic

operations; if you have some others things, you can perform other operations. So, what

65

operations are allowed depend on the values and this is given technically the name type.
So, when we said type of values it is really specifying what kinds of operations are

legally available on that class of values.

(Refer Slide Time: 04:01)

Numeric values

* Numbers come in two flavours
* int — integers
» float — fractional numbers
« 178, -3, 4283829 are values of type int

» 37.82, -0.01, 28.7998 are values of type float

So the most basic type of value that one can think of are numbers. Now in python and in
most programming languages numbers come in two distinct flavours as you can call
them integers and numbers which have fractional parts. So, in python these two types are
called int and float. So, int refers to numbers, which have no decimal part, which have no
fractional part. So, these are whole numbers they could be negative. So, these are some
examples of values of type int. On the other hand, if we have fractional parts then these

are values of type float.

66

(Refer Slide Time: 04:43)

int vs float B e

* Why are these different types?

« Internally, a value is stored as a finite sequence of
0’s and 1’s (binary digits, or bits)

* For an int, this sequence is read off as a binar
number 4@—;_1';.1 >

* Fora float, this sequence breaks up intoa |
mantissa and exponent a-hsia| e

s
ot)

« Like “scientific” notation{ 0.602 x 102¢)

Normally in mathematics we can think of integers as being a special class of say real
numbers. So, real numbers are arbitrary numbers with fractional parts integers are those
real numbers which have no fractional. But in a programming language there is a real
distinction between these two and that is, because of the way that these numbers are
stored. So, when python has to remember values it has to represent this value in some

internal form and this has to take a finite amount of space.

If you are writing down, say a manual addition sum you will write it down on a sheet of
paper and depending on a sheet of paper and the size of your handwriting there is a
physical limit to how large a number you can add on that given sheet of paper. In the
same way any programming language, will fix in advance some size of how many digits
it uses to store numbers and in particular as you know almost all programming languages
will internally use a binary representation. So, we can assume that every number whether
an integer or real number is stored as a finite sequence of zeroes and ones which

represents its value.

Now, if this happens to be an integer you can just treat that binary sequence as a binary
number as you would have learnt in school. So, the digits represent powers of 2, usually
there will be one extra binary digit O or 1 indicate whether it is plus or minus and they
may be other more efficient ways of representing negative numbers, but in particular you

can assume that integers are basically binary numbers.

67

They are just written as integers in binary notation. Now when we come to non integers
then we have two issues one is we have to remember the value which is the number of
digits which make up the fractional part and then we have to remember the scale. So,
think of a number in scientific notation right, so, your normally have two parts when we
use things in physics and chemistry for instance, we have the value itself that is what are
the components of the value and we have how we must shift it with respect to the

decimal point. So, this says move the decimal point 24 digits to the right.

So, this first part is called the mantissa right and this is called the exponent. So, when we
have the number in memory if it is an int, then the entire string is just considered to be
one value where as if we have block of digits which represents a float. Then we have

some part of it, which is the mantissa, and the other part, which is the exponent.

The same sequence of binary digits if we think of it as an int has a different value and if
we think of it as a float has a different value. So, why float you might ask. Float is an old
term for computer science for floating point; it refers to the fact that this decimal point is
not fixed. So, an integer can be thought of as a fixed decimal point at the end of the
integer a floating point number is really a number where the decimal point can vary and
how much it varies depends on the exponent. So there are basically fundamental
differences in the way you represent integers and floating point numbers inside a
computer and therefore, one has to be careful to distinguish between the two. So, what

can we do with numbers?

68

(Refer Slide Time: 07:59)

Operations on numbers

* Normal arithmetic operations: +, -, *, /
* Note that / always produces a float

« 7/3.5i8 2.0, \{/2)is 3.5

Well we have the normal arithmetic operations plus, minus, multiplication, which has a
symbol star modern x and division, which has a symbol slash. Now notice that for the
first three operations it is very clear if I have 2 ints and I multiply them or add them or
subtract them I get an int. But I have 2 floats I will get a float, division, on the other hand
will always produce a float if i say 7 and divided by 2 , for instance where both are ints I

will get an answer 3 point 5.

Now in general python will allow you to mix ints and floats, so i can write 8 plus 2 point
6 even though the left is an int and right is a float and it will correctly give me 10 point 6.
In that sense python respects the fact that floats are a generalized form of int. So, we can
always think of an int as being a float with a point 0 at the end. So, we can sort of
upgrade an int to a float if you want to think of it that way and incorporate with an
expression, but division always produces floats. So, 7 divided by 3 point 5 as an example
of a mixed expression, where I have an int and float and this division results in 2 point 0

and 7 by two results in 3.5.

69

(Refer Slide Time: 09:15)

Operations on numbers

» Normal arithmetic operations: +, -, *,/
* Note that / always produces a float
» 7/3.5is2.0, 7/2is 3.5

* Quotient and remainder: // and %
* 9//5is 1, 9%5is 4

* Exponentiation: &%)

» 3*%%4 s 81

Now there are some operations where we want to preserve the integer nature of the
operands. We have seen one repeatedly in gcd which is the modulus operator, the
remainder operator. But the req corresponding operator that go through the reminder is
the quotient operator. So, if I use a double slash it gives me the quotient. So, 9 double
slash 5 says how many times 5 going to 9 exactly without a fraction and that is 1 because
ina 5 times 11is 5 and 5 times 2 is 10 which is bigger than 9 and the remainder is 4. So, 9
percent 5 will be 4. Another operation which is quite natural and common is to raise one
number to another number and this is denoted by double star. 3 double star 4 is what we

would write normally as 3 to the power 4 is 3 times, 3 times, 3 four times right and this is

81.

70

(Refer Slide Time: 10:12)

Other operations on
numbers

* log(), sqrt(), sin(), ..
» Built in to Python, but not available by default
* Must include math “library”

« from math import *

Now there are more advanced functions like log, square root, sin and all which are also
built into python, but these are not loaded by default. If you start the python interpreter
you have to include these explicitly. Remember we said that we can include functions
from a file we write using this import statement. There is a built in set of functions for
mathematical things which is called math. So, we must add from math import star; this
can be done even within the python program it does not have to be done only at the
interpreter. So, when we write a python program where we would like to use log, square
root and sin and such like, then we should add the line from math import star before we

use these functions.

71

(Refer Slide Time: 10:58)

Names, values and types

* Values have types
* Type determines what operations are legal

* Names inherit their type from their current value
* Type of a name is not fixed

* Unlike languages like C, C++, Java where each
name is “declared” in advance with its type

We have seen three concepts - names which are what we use to remember values, values
which are the actual quantities which we assign to names and we said that there is a
notion of a type. So, type determines what operations are legal given the values that we
have. So, the main difference between python and other languages is that names
themselves do not have any inherent type. I do not say in advance that the name i as an
integer or the name x is a float. Names have only the type that they are currently

assigned to by a value that they have.

The type of a name is not fixed. In a language like C or C++ or Java we announce our
names in advance. We declare them and say in advance what type they have. So, if we
see an 1 in an expression we know in advance that this i was declared to be of type int

this x was declared to be of type float and so on. Now in python this is not the case.

72

(Refer Slide Time: 12:00)

Names, values and types

» Names can be assigned values of different types as
the program evolves

1 1S 1nt
*1 # 1 is still int

i =
i
j /3 # 3 is float, / creates float

~o~

]

1 = 2% ¢ 1 1s now float

(o

* type(e) returns type of expression e

* Not good style to assign values of mixed types to
same name!

So, let us illustrate this with an example. So, the name main feature of python is that a
name can be assigned values of different types as the program evolves. So, if we start
with an assignment i equals to 5 since 5 is an int i has a type int. Now if we take an
expression, which produces an int such as 7 times 1, i remain an int. Now if we divide
the value of i by 3. So, at this point if we had followed the sequence i is 7. So, 7 by 3
would be 2.33 and this would be a float.

Therefore, because the operation results in a float at this point j is assigned the value of
type float. Now if we continue at some later stage we take i and assign it to the value 2
times j, since j was a float i now becomes float. In the interpreter there is a useful
function called type. So, if you type the word type and put an expression and either a

name or an expression in the bracket, it will tell you actually type of the expression.

Now although python allows this feature of changing the type of value assigned to a
name as the program evolves, this is not something that is recommended. Because if you
see an 1 and sometimes its a float and sometimes its an int it is only confusing for you as
a programmer and for the person trying to understand your code. The same way that we
said before that we would like to organize our python code so that we define all functions
before we execute statements, it is a good idea to fix in advance in your mind at least,
what different names stand for and stick to a consistent way of using these either as ints

or as floats.

73

(Refer Slide Time: 13:54)

Let us execute some code and check that what we have been saying actually happens. So,
supposing we start the python interpreter and we say 1 is equal to 5, then if we use this
command type i it tells us type of i. So, it returns it in the form which is not exactly
transparent, but it says that i is of class int. So, you see the word int, if i say j is equal to 7
point 5 and 1 ask for the type of j then it will say j is of class float. So, the names int and
floats are used internally to signify the types of these expressions. Now if I say i is equal
to 2 times j as we suggested 1 has a value 15 point 0, because j was a float and therefore,
the multiplication resulted in a float and indeed if we ask for the type of i at this point it

says that 1 is now a float.

The point to keep in mind is that the name is themselves do not have fixed types they are
not assigned types in advance. It depends on the value that is currently stored in that

name according to the last expression that was assigned.

74

